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Further connections – normal surface theory

• facets we are interested in

= hitting simplices of the associated colorful Gale transform

• ⇒ Deza’s bound 1 +
∏d−1

i=1 (|Ci | − 1) becomes 1 + 2d−1

⇒ Burton’s conjecture is true!!



Proof idea



Proof of Main Lemma: Initial configuration

Lemma : β̃d−1(B,Z2) = 1

• Let S 3 0 be a simplex with vertices v0, v1, . . . , vd .

• ϕ(Ci ) = {vi ,−vi ,−2vi ,−3vi . . . ,−
(
|Ci | − 1

)
vi}.

0

• B deformation retracts onto the (d − 1)-dimensional sphere,
hence β̃d−1(B) = 1.
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Proof of Main Lemma: Types of flips

Definition
A flip is called

1 safe, if the line segment xx′ does not cross any flipping
hyperplane

2 mild, if the line segment xx′ does cross a flipping hyperplane
aff{0, x0, x1, . . . , xd−2} and 0 /∈ conv{x, x′, x0, x1, . . . , xd−2}

3 wild, otherwise
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Proof of Main Lemma: Safe and mild flips

1 a safe flip preserves B ⇒ it preserves β̃d−1(B)

⇒ we may assume that all the points are in general position

2 a mild flip preserves B ⇒ it preserves β̃d−1(B)
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Proof of Main Lemma: Wild flips

Wild flips do change B. B ′ = simpl. complex after the flip
σ0 a d-simplex present in B ′ and not in B

σ1, . . . , σr all d-simplices that are in B and not in B ′

τ1, . . . , τs all d-simplices present in both B and B ′

Since β̃d−1(B) = 1, every (d − 1)-cycle z in B can be expressed as

z =
∑
i∈I

∂σi +
∑
j∈J

∂τj ,

where I ⊆ {0, 1, . . . , r} and J ⊆ {1, . . . , s}.

∂τi and ∂σ0 boundaries in B ′ ⇒ ∂σ1, . . . , ∂σr generate H̃d−1(B ′).
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Proof of Main Lemma

Clearly ∂σ1 is not zero homologous, therefore β̃d−1(B ′) ≥ 1.

Lemma: For every k > 0, the cycle ∂σ1 + ∂σk is contained in a
subcomplex C with β̃d−1(C ) = 0.

⇒ all (d − 1)-cycles in C are zero homologous
⇒ ∂σ1 and ∂σk are homologous in B ′ for all k and β̃d−1(B ′) = 1
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Thank you for your attention!


	Definitions
	History and main result
	Topological reformulation
	Further connections – normal surface theory and Minkowski sums
	Proof idea (if time permits)

