Zuzana Patáková

joint work with Karim Adiprasito, Philip Brinkmann, Arnau Padrol, Pavel Paták, and Raman Sanyal

Institute of Science and Technology

ICERM 1st December, Providence

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

•
$$C = \{C_0, \dots, C_d\}$$

• $\varphi \colon \bigcup C_i \to \mathbb{R}^d \implies (C, \varphi) \text{ is a colorful configuration}$

• $C = \{C_0, \dots, C_d\}$ • $\varphi \colon \bigcup C_i \to \mathbb{R}^d \implies (C, \varphi) \text{ is a colorful configuration}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

• $C = \{C_0, \ldots, C_d\}$

- $\varphi \colon \bigcup C_i \to \mathbb{R}^d \qquad \Rightarrow \qquad (\mathcal{C}, \varphi) \text{ is a colorful configuration}$
- $T \subseteq \bigcup C_i$ is colorful if it contains |T| colors

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $C = \{C_0, \ldots, C_d\}$

- $\varphi \colon \bigcup C_i \to \mathbb{R}^d \qquad \Rightarrow \qquad (\mathcal{C}, \varphi) \text{ is a colorful configuration}$
- $T \subseteq \bigcup C_i$ is colorful if it contains |T| colors
- a simplex is colorful if it is spanned by $\varphi(T)$, T colorful

Colorful simplex

・ロト・日本・日本・日本・日本・日本・日本

• $C = \{C_0, \ldots, C_d\}$

- $\varphi \colon \bigcup C_i \to \mathbb{R}^d \qquad \Rightarrow \qquad (\mathcal{C}, \varphi) \text{ is a colorful configuration}$
- $T \subseteq \bigcup C_i$ is colorful if it contains |T| colors
- a simplex is colorful if it is spanned by $\varphi(T)$, T colorful

Colorful simplex

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − のへで

• $C = \{C_0, \ldots, C_d\}$

- $\varphi \colon \bigcup C_i \to \mathbb{R}^d \quad \Rightarrow \quad (\mathcal{C}, \varphi) \text{ is a colorful configuration}$
- $T \subseteq \bigcup C_i$ is colorful if it contains |T| colors
- a simplex is colorful if it is spanned by $\varphi(T)$, T colorful

Colorful simplex

• $C = \{C_0, \ldots, C_d\}$

- $\varphi \colon \bigcup C_i \to \mathbb{R}^d \qquad \Rightarrow \qquad (\mathcal{C}, \varphi) \text{ is a colorful configuration}$
- $T \subseteq \bigcup C_i$ is colorful if it contains |T| colors
- a simplex is colorful if it is spanned by $\varphi(T)$, T colorful

Colorful simplex

・ロト・日本・日本・日本・日本・日本・日本

• $C = \{C_0, \ldots, C_d\}$

- $\varphi \colon \bigcup C_i \to \mathbb{R}^d \qquad \Rightarrow \qquad (\mathcal{C}, \varphi) \text{ is a colorful configuration}$
- $T \subseteq \bigcup C_i$ is colorful if it contains |T| colors
- a simplex is colorful if it is spanned by $\varphi(T)$, T colorful

Not Colorful simplex

• $C = \{C_0, \ldots, C_d\}$

- $\varphi \colon \bigcup C_i \to \mathbb{R}^d \qquad \Rightarrow \qquad (\mathcal{C}, \varphi) \text{ is a colorful configuration}$
- $T \subseteq \bigcup C_i$ is colorful if it contains |T| colors
- a simplex is colorful if it is spanned by $\varphi(T)$, T colorful

Not Colorful simplex

・ロト・西ト・山田・山田・山下・

Centered colorful configurations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $p \in \mathbb{R}^d$ arbitrary point . . . wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex

- $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex

- $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex

Allowed

- $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex

Not Allowed

- $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- C is centered ... $0 \in \operatorname{conv} \varphi(C_i)$

- $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- C is centered ... $0 \in \operatorname{conv} \varphi(C_i)$

- $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- C is centered ... $0 \in \operatorname{conv} \varphi(C_i)$

- $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- C is centered ... $0 \in \operatorname{conv} \varphi(C_i)$

- $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- C is centered ... $0 \in \operatorname{conv} \varphi(C_i)$

- $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- C is centered ... $0 \in \operatorname{conv} \varphi(C_i)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- $p \in \mathbb{R}^d$ arbitrary point ... wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- C is centered ... $0 \in \operatorname{conv} \varphi(C_i)$

- $p \in \mathbb{R}^d$ arbitrary point . . . wlog $\mathbf{p} = \mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- C is centered ... $0 \in \operatorname{conv} \varphi(C_i)$
- colorful d-dim simplex S is hitting if $0 \in \operatorname{conv} S$

A colorful configuration

- $\pmb{p} \in \mathbb{R}^d$ arbitrary point . . . wlog $\pmb{p} = \pmb{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- C is centered ... $0 \in \operatorname{conv} \varphi(C_i)$
- colorful d-dim simplex S is hitting if $0 \in \operatorname{conv} S$

- $\pmb{p} \in \mathbb{R}^d$ arbitrary point . . . wlog $\pmb{p} = \pmb{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- C is centered ... $0 \in \operatorname{conv} \varphi(C_i)$
- colorful d-dim simplex S is hitting if $0 \in \operatorname{conv} S$

Another hitting simplex

- $\bullet \ \mathcal{C}$ is a colorful centered configuration
- colorful simplicial depth of C = cdepth(C)
 number of hitting simplices of C

Deza, Huang, Stephen and Terlaky '06

- Placing all C_i the same ~> simplicial depth
- points with maximal simplicial depth

pprox higher dim analogue of $\, {f median} \,$

applications in statistics

- $\bullet \ \mathcal{C}$ is a colorful centered configuration
- colorful simplicial depth of C = cdepth(C)
 = number of hitting simplices of C

Deza, Huang, Stephen and Terlaky '06

- Placing all C_i the same \rightsquigarrow simplicial depth Liu '90
- points with maximal simplicial depth pprox higher dim analogue of **median**
- applications in statistics

- $\bullet \ \mathcal{C}$ is a colorful centered configuration
- colorful simplicial depth of C = cdepth(C)
 = number of hitting simplices of C

Deza, Huang, Stephen and Terlaky '06

- Placing all C_i the same \rightsquigarrow simplicial depth Liu '90
- points with maximal simplicial depth \approx higher dim analogue of **median**
- applications in statistics

Theorem (Colorful Carathéodory, Bárány '82) There is always at least one hitting simplex. (cdepth ≥ 1)

Conjecture (Deza, Huang, Stephen, Terlaky, '06) If Card C_0 = Card C_1 = ... = Card C_d = d + 1, then

- 1 cdepth $C \ge d^2 + 1$
- 2 cdepth $\mathcal{C} \leq 1 + d^{d+1}$

Deza et al: both bounds can be attained

Theorem (Colorful Carathéodory, Bárány '82) There is always at least one hitting simplex. (cdepth ≥ 1) Conjecture (Deza, Huang, Stephen, Terlaky, '06) If Card $C_0 = \text{Card } C_1 = \ldots = \text{Card } C_d = d + 1$, then \bigcirc cdepth $C \geq d^2 + 1$ \bigcirc cdepth $C \leq 1 + d^{d+1}$

Deza et al: both bounds can be attained

Theorem (Colorful Carathéodory, Bárány '82) There is always at least one hitting simplex. (cdepth ≥ 1) Conjecture (Deza, Huang, Stephen, Terlaky, '06) If Card $C_0 = \text{Card } C_1 = \ldots = \text{Card } C_d = d + 1$, then 1 cdepth $C \geq \texttt{d}^2 + \texttt{1}$ 2 cdepth $C \leq \texttt{1} + \texttt{d}^{\texttt{d}+1}$

Deza et al: both bounds can be attained

Theorem (Colorful Carathéodory, Bárány '82) There is always at least one hitting simplex. (cdepth ≥ 1) Conjecture (Deza, Huang, Stephen, Terlaky, '06) If Card $C_0 = \text{Card } C_1 = \ldots = \text{Card } C_d = d + 1$, then 1 cdepth $C \geq d^2 + 1$ 2 cdepth $C \leq 1 + d^{d+1}$

Deza et al: both bounds can be attained

Theorem (Colorful Carathéodory, Bárány '82) There is always at least one hitting simplex. (cdepth ≥ 1) Conjecture (Deza, Huang, Stephen, Terlaky, '06) If Card $C_0 = \text{Card } C_1 = \ldots = \text{Card } C_d = d + 1$, then 1 cdepth $C \geq d^2 + 1$ 2 cdepth $C \leq 1 + d^{d+1}$

Deza et al: both bounds can be attained

Upper bound

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$\operatorname{cdepth} \mathcal{C} \leq 1 + \prod_{i=0}^{d} (\operatorname{Card} C_i - 1).$$

- for Card $C_i = d + 1$, we have Deza's upper bound $1 + d^{d+1}$
- the bound is tight!

Upper bound

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$ext{cdepth}\,\mathcal{C}\leq 1+\prod_{i=0}^dig(ext{Card}\,m{C}_i-1ig).$$

- for Card $C_i = d + 1$, we have Deza's upper bound $1 + d^{d+1}$
- the bound is tight!

Upper bound

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$\operatorname{cdepth} \mathcal{C} \leq 1 + \prod_{i=0}^d (\operatorname{Card} C_i - 1).$$

- for Card $C_i = d + 1$, we have Deza's upper bound $1 + d^{d+1}$
- the bound is tight!

Upper bound

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$\operatorname{cdepth} \mathcal{C} \leq 1 + \prod_{i=0}^d (\operatorname{Card} C_i - 1).$$

- for Card $C_i = d + 1$, we have Deza's upper bound $1 + d^{d+1}$
- the bound is tight!

Upper bound

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$ext{cdepth} \, \mathcal{C} \leq 1 + \prod_{i=0}^d ig(ext{Card} \, \mathit{C}_i - 1ig).$$

- for Card $C_i = d + 1$, we have Deza's upper bound $1 + d^{d+1}$
- the bound is tight!

Upper bound

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$\operatorname{cdepth} \mathcal{C} \leq 1 + \prod_{i=0}^d (\operatorname{Card} C_i - 1).$$

- for Card $C_i = d + 1$, we have Deza's upper bound $1 + d^{d+1}$
- the bound is tight!

Topological reformulation

• $A = \text{abstract simpl. complex of all colorful sets in } \bigcup C_i$

- B =all sets $S \subset \bigcup C_i$ s.t. $\varphi(S)$ is **non-hitting**
- f_i(K) = number of *i*-dim simplices in K
- $\operatorname{cdepth}(\mathcal{C}) = f_d(A) f_d(B)$
- $A^{(d-1)} = B^{(d-1)} \Rightarrow \text{ for } i < d$ $\Rightarrow \text{ for } i < d - 1$ $\widetilde{\beta}_i(A) = \widetilde{\beta}_i(B)$

- $A = \text{abstract simpl. complex of all colorful sets in } \bigcup C_i$
- $B = \text{all sets } S \subset \bigcup C_i \text{ s.t. } \varphi(S) \text{ is non-hitting}$
- f_i(K) = number of *i*-dim simplices in K
- $\operatorname{cdepth}(\mathcal{C}) = f_d(A) f_d(B)$
- $A^{(d-1)} = B^{(d-1)}$ \Rightarrow for i < d $f_i(A) = f_i(B)$ \Rightarrow for i < d-1 $\widetilde{\beta}_i(A) = \widetilde{\beta}_i(B)$

- $A = \text{abstract simpl. complex of all colorful sets in } \bigcup C_i$
- B =all sets $S \subset \bigcup C_i$ s.t. $\varphi(S)$ is **non-hitting**
- $f_i(K)$ = number of *i*-dim simplices in K
- $\operatorname{cdepth}(\mathcal{C}) = f_d(A) f_d(B)$
- $A^{(d-1)} = B^{(d-1)}$ \Rightarrow for i < d $f_i(A) = f_i(B)$ \Rightarrow for i < d-1 $\widetilde{\beta}_i(A) = \widetilde{\beta}_i(B)$

- $A = \text{abstract simpl. complex of all colorful sets in } \bigcup C_i$
- B =all sets $S \subset \bigcup C_i$ s.t. $\varphi(S)$ is **non-hitting**
- $f_i(K)$ = number of *i*-dim simplices in K
- $cdepth(C) = f_d(A) f_d(B)$
- $A^{(d-1)} = B^{(d-1)}$ \Rightarrow for i < d $f_i(A) = f_i(B)$ \Rightarrow for i < d-1 $\widetilde{\beta}_i(A) = \widetilde{\beta}_i(B)$

- $A = \text{abstract simpl. complex of all colorful sets in } \bigcup C_i$
- B =all sets $S \subset \bigcup C_i$ s.t. $\varphi(S)$ is **non-hitting**
- $f_i(K)$ = number of *i*-dim simplices in K
- $\operatorname{cdepth}(\mathcal{C}) = f_d(A) f_d(B)$
- $A^{(d-1)} = B^{(d-1)}$ \Rightarrow for i < d $f_i(A) = f_i(B)$ \Rightarrow for i < d-1 $\widetilde{\beta}_i(A) = \widetilde{\beta}_i(B)$

- $A = \text{abstract simpl. complex of all colorful sets in } \bigcup C_i$
- B =all sets $S \subset \bigcup C_i$ s.t. $\varphi(S)$ is **non-hitting**
- $f_i(K)$ = number of *i*-dim simplices in K
- $cdepth(C) = f_d(A) f_d(B)$
- $A^{(d-1)} = B^{(d-1)}$ \Rightarrow for i < d $f_i(A) = f_i(B)$ \Rightarrow for i < d-1 $\widetilde{\beta}_i(A) = \widetilde{\beta}_i(B)$

- $A = \text{abstract simpl. complex of all colorful sets in } \bigcup C_i$
- B =all sets $S \subset \bigcup C_i$ s.t. $\varphi(S)$ is **non-hitting**
- $f_i(K)$ = number of *i*-dim simplices in K
- $cdepth(\mathcal{C}) = f_d(A) f_d(B)$
- $A^{(d-1)} = B^{(d-1)}$ \Rightarrow for i < d $f_i(A) = f_i(B)$ \Rightarrow for i < d-1 $\widetilde{\beta}_i(A) = \widetilde{\beta}_i(B)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\widetilde{\chi}(A) = -1 + \sum_{i=0}^d (-1)^i f_i(A) = \sum_{i=0}^d (-1)^i \widetilde{eta}_i(A)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

$$\begin{split} \widetilde{\chi}(A) &= -1 + \sum_{i=0}^{d} (-1)^{i} f_{i}(A) = \sum_{i=0}^{d} (-1)^{i} \widetilde{\beta}_{i}(A) \\ &\Rightarrow f_{d}(A) = (-1)^{d} \left(\sum_{i=0}^{d} (-1)^{i} \widetilde{\beta}_{i}(A) + 1 - \sum_{i=0}^{d-1} (-1)^{i} f_{i}(A) \right) \end{split}$$

cdepth
$$C = (-1)^d \left(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) + 1 - \sum_{i=0}^{d-1} (-1)^i f_i(A) \right) - f_d(B)$$

$$\Rightarrow f_d(A) = (-1)^d \left(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) + 1 - \sum_{i=0}^{d-1} (-1)^i f_i(A)\right)$$

cdepth
$$C = (-1)^d \left(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) + 1 - \sum_{i=0}^{d-1} (-1)^i f_i(A) \right) - f_d(B)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathsf{cdepth}\,\mathcal{C} = (-1)^d \Big(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) + 1 - \sum_{i=0}^{d-1} (-1)^i f_i(A) \Big) - f_d(B)$$

$$f_d(B) = (-1)^d \left(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(B) + 1 - \sum_{i=0}^{d-1} (-1)^i f_i(B) \right)$$

cdepth
$$C = (-1)^d \left(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) + 1 - \sum_{i=0}^{d-1} (-1)^i f_i(A) - \sum_{i=0}^d (-1)^i \widetilde{\beta}_i(B) - 1 + \sum_{i=0}^{d-1} (-1)^i f_i(B) \right)$$

$$f_d(B) = (-1)^d \left(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(B) + 1 - \sum_{i=0}^{d-1} (-1)^i f_i(B) \right)$$

$$\mathsf{cdepth}\,\mathcal{C} = (-1)^d \Big(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) + 1 - \sum_{i=0}^{d-1} (-1)^i f_i(A) \\ - \sum_{i=0}^d (-1)^i \widetilde{\beta}_i(B) - 1 + \sum_{i=0}^{d-1} (-1)^i f_i(B) \Big)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathsf{cdepth}\,\mathcal{C} = (-1)^{d} \Big(\sum_{i=0}^{d} (-1)^{i} \widetilde{\beta}_{i}(A) - \sum_{i=0}^{d-1} (-1)^{i} f_{i}(A) \\ - \sum_{i=0}^{d} (-1)^{i} \widetilde{\beta}_{i}(B) + \sum_{i=0}^{d-1} (-1)^{i} f_{i}(B) \Big)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\operatorname{cdepth} \mathcal{C} = (-1)^d \left(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) - \sum_{i=0}^{d-1} (-1)^i f_i(A) - \sum_{i=0}^d (-1)^i \widetilde{\beta}_i(B) + \sum_{i=0}^{d-1} (-1)^i f_i(B) \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

cdepth
$$C = (-1)^d \Big(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) - \sum_{i=0}^{d-1} (-1)^i f_i(A) - \sum_{i=0}^d (-1)^i \widetilde{\beta}_i(B) + \sum_{i=0}^{d-1} (-1)^i f_i(B) \Big)$$

For i < d: $f_i(A) = f_i(B)$

cdepth
$$\mathcal{C} = (-1)^d \left(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) - \sum_{i=0}^d (-1)^i \widetilde{\beta}_i(B)\right)$$

cdepth
$$C = (-1)^d \left(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) - \sum_{i=0}^d (-1)^i \widetilde{\beta}_i(B) \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

cdepth
$$\mathcal{C} = (-1)^d \Big(\sum_{i=0}^d (-1)^i \widetilde{\beta}_i(A) - \sum_{i=0}^d (-1)^i \widetilde{\beta}_i(B)\Big)$$

For i < d - 1: $\widetilde{\beta}_i(A) = \widetilde{\beta}_i(B)$

$$\mathsf{cdepth}\,\mathcal{C} = (-1)^d \Big((-1)^d \widetilde{\beta}_d(A) + (-1)^{d-1} \widetilde{\beta}_{d-1}(A) \\ - (-1)^d \widetilde{\beta}_d(B) - (-1)^{d-1} \widetilde{\beta}_{d-1}(B) \Big)$$

$$\operatorname{cdepth} \mathcal{C} = (-1)^d \left((-1)^d \widetilde{\beta}_d(A) + (-1)^{d-1} \widetilde{\beta}_{d-1}(A) - (-1)^d \widetilde{\beta}_d(B) - (-1)^{d-1} \widetilde{\beta}_{d-1}(B) \right)$$

$$\operatorname{cdepth} \mathcal{C} = \widetilde{eta}_d(A) - \widetilde{eta}_{d-1}(A) - \widetilde{eta}_d(B) + \widetilde{eta}_{d-1}(B)$$

$$\operatorname{cdepth} \mathcal{C} = \widetilde{\beta}_d(A) - \widetilde{\beta}_{d-1}(A) - \widetilde{\beta}_d(B) + \widetilde{\beta}_{d-1}(B)$$

$$\operatorname{cdepth} \mathcal{C} = \widetilde{\beta}_d(A) - \mathbf{0} - \widetilde{\beta}_d(B) + \widetilde{\beta}_{d-1}(B)$$

$$\operatorname{cdepth} \mathcal{C} = \widetilde{eta}_d(A) - \widetilde{eta}_d(B) + \widetilde{eta}_{d-1}(B)$$

$$\operatorname{cdepth} \mathcal{C} = \widetilde{\beta}_d(A) - \widetilde{\beta}_d(B) + \widetilde{\beta}_{d-1}(B)$$

$$\operatorname{cdepth} \mathcal{C} = \prod_{i=0}^{d} \left(|C_i| - 1 \right) - \widetilde{\beta}_d(B) + \widetilde{\beta}_{d-1}(B)$$

$$\mathsf{cdepth}\,\mathcal{C} = \prod_{i=0}^d \Bigl(|\mathcal{C}_i|-1\Bigr) - \widetilde{eta}_d(B) + \widetilde{eta}_{d-1}(B)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\operatorname{cdepth} \mathcal{C} = \prod_{i=0}^{d} \left(|C_i| - 1 \right) - \widetilde{\beta}_d(B) + \widetilde{\beta}_{d-1}(B)$$

Our main Lemma: $\widetilde{eta}_{d-1}(B) = 1$

Topological approach

$$\mathsf{cdepth}\,\mathcal{C} = \,\prod\limits_{i=0}^d \Bigl(|\mathcal{C}_i|-1\Bigr) - \widetilde{eta}_d(B) + 1$$

Topological approach

$$\mathsf{cdepth}\,\mathcal{C} = \prod_{i=0}^d \left(|\mathcal{C}_i| - 1
ight) - \widetilde{eta}_d(B) + 1 \ \Rightarrow \quad \mathsf{cdepth}\,\mathcal{C} \leq \prod_{i=0}^d \left(|\mathcal{C}_i| - 1
ight) + 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma $\widetilde{\beta}_{d-1}(B; \mathbb{Z}_2) = 1.$

Proof idea:

1 First show for a special configuration of points:

② Use flips preserving $\widetilde{eta}_{d-1}(B;\mathbb{Z}_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma $\widetilde{\beta}_{d-1}(B; \mathbb{Z}_2) = 1.$

Proof idea:

) First show for a special configuration of points:

② Use flips preserving $\widetilde{eta}_{d-1}(B;\mathbb{Z}_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma $\widetilde{\beta}_{d-1}(B; \mathbb{Z}_2) = 1.$

Proof idea:

1 First show for a special configuration of points:

② Use flips preserving $\widetilde{eta}_{d-1}(B;\mathbb{Z}_2)$

Lemma $\widetilde{\beta}_{d-1}(B; \mathbb{Z}_2) = 1.$

Proof idea:

1 First show for a special configuration of points:

2 Use flips preserving $\widetilde{\beta}_{d-1}(B; \mathbb{Z}_2)$

Further connections

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• normal *d*-fan = collection of polyhedral cones

• normal *d*-fan = collection of polyhedral cones

1-fan, given by normals of a triangle

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• normal *d*-fan = collection of polyhedral cones

1-fan, given by normals of a triangle

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• normal *d*-fan = collection of polyhedral cones

2-fan; halfplanes = leafs

• normal *d*-fan = collection of polyhedral cones

2-fan; halfplanes = leafs

• two (and more) normal *d*-fans ⇒ **common refinement**

 Setting: F₁,...F_{d-1} normal (d - 1)-fans in general position with leafs L^{F_i}₁, L^{F_i}₂, L^{F_i}₃

common refinement = collection of rays $L_{i_1}^{F_1} \cap \ldots \cap L_{i_{d-1}}^{F_{d-1}}$

- Question: Max number of rays in the common refinement?
- Conjecture (Burton'03): 1 + 2^{d-1}

 Setting: F₁,...F_{d-1} normal (d - 1)-fans in general position with leafs L^{F_i}₁, L^{F_i}₂, L^{F_i}₃

common refinement = collection of rays $L_{i_1}^{F_1} \cap \ldots \cap L_{i_{d-1}}^{F_{d-1}}$

• Question: Max number of rays in the common refinement?

• Conjecture (Burton'03): 1 + 2^{d-1}

 Setting: F₁,...F_{d-1} normal (d - 1)-fans in general position with leafs L^{F_i}₁, L^{F_i}₂, L^{F_i}₃

common refinement = collection of rays $L_{i_1}^{F_1} \cap \ldots \cap L_{i_{d-1}}^{F_{d-1}}$

- Question: Max number of rays in the common refinement?
- Conjecture (Burton'03): 1 + 2^{d-1}

- $P_1,\ldots,P_k\subset \mathbb{R}^d$ be polytopes (not necessarily full dim)
- Minkowski sum
 - $P_1 + P_2 + \ldots + P_k = \{p_1 + p_2 + \ldots + p_k \mid p_i \in P_i\} \subseteq \mathbb{R}^d$

- $P_1,\ldots,P_k\subset \mathbb{R}^d$ be polytopes (not necessarily full dim)
- Minkowski sum

 $P_1 + P_2 + \ldots + P_k = \{p_1 + p_2 + \ldots + p_k \mid p_i \in P_i\} \subseteq \mathbb{R}^d$

- $P_1,\ldots,P_k\subset \mathbb{R}^d$ be polytopes (not necessarily full dim)
- Minkowski sum

 $P_1 + P_2 + \ldots + P_k = \{p_1 + p_2 + \ldots + p_k \mid p_i \in P_i\} \subseteq \mathbb{R}^d$

イロト イポト イヨト イヨト

- $P_1, \ldots, P_k \subset \mathbb{R}^d$ be polytopes (not necessarily full dim)
- Minkowski sum $P_1 + P_2 + \ldots + P_k = \{p_1 + p_2 + \ldots + p_k \mid p_i \in P_i\} \subseteq \mathbb{R}^d$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 Setting: F₁,...F_{d−1} normal (d − 1)-fans in general position with leafs L^{F_i}₁, L^{F_i}₂, L^{F_i}₃

common refinement = collection of rays $L_{i_1}^{F_1} \cap \ldots \cap L_{i_{d-1}}^{F_{d-1}}$

 Setting: F₁,...F_{d−1} normal (d − 1)-fans in general position with leafs L^{F_i}₁, L^{F_i}₂, L^{F_i}₃

common refinement = collection of rays $L_{i_1}^{F_1} \cap \ldots \cap L_{i_{d-1}}^{F_{d-1}}$

 Reformulation: number of rays = number of facets of Minkowski sum which correspond to a Minkow. sum of facets

- facets we are interested in
 - = hitting simplices of the associated colorful Gale transform

- \Rightarrow Deza's bound $1 + \prod_{i=1}^{d-1} (|C_i| 1)$ becomes $1 + 2^{d-1}$
 - \Rightarrow Burton's conjecture is true!!

Proof idea

Lemma : $\widetilde{\beta}_{d-1}(B,\mathbb{Z}_2) = 1$

• Let $S \ni 0$ be a simplex with vertices $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_d$.

• $\varphi(C_i) = \{\mathbf{v}_i, -\mathbf{v}_i, -2\mathbf{v}_i, -3\mathbf{v}_i, \dots, -(|C_i|-1)\mathbf{v}_i\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma : $\widetilde{\beta}_{d-1}(B,\mathbb{Z}_2) = 1$

• Let $S \ni 0$ be a simplex with vertices $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_d$.

•
$$\varphi(C_i) = \{\mathbf{v}_i, -\mathbf{v}_i, -2\mathbf{v}_i, -3\mathbf{v}_i, \dots, -(|C_i|-1)\mathbf{v}_i\}.$$

Lemma : $\widetilde{\beta}_{d-1}(B,\mathbb{Z}_2) = 1$

• Let $S \ni 0$ be a simplex with vertices $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_d$.

•
$$\varphi(C_i) = \{\mathbf{v}_i, -\mathbf{v}_i, -2\mathbf{v}_i, -3\mathbf{v}_i, \dots, -(|C_i|-1)\mathbf{v}_i\}.$$

Lemma : $\widetilde{\beta}_{d-1}(B, \mathbb{Z}_2) = 1$

• Let $S \ni 0$ be a simplex with vertices $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_d$.

•
$$\varphi(C_i) = \{\mathbf{v}_i, -\mathbf{v}_i, -2\mathbf{v}_i, -3\mathbf{v}_i, \dots, -(|C_i|-1)\mathbf{v}_i\}.$$

Definition Let $\mathbf{x} \in C_i$ be a point.

Definition

Let $\mathbf{x} \in C_i$ be a point. *H* is a flipping hyperplane for \mathbf{x} if $H = \inf\{0, \mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{d-2}\}$, where $\mathbf{x}_j \in C_{k_j}$ and $i \neq k_j \neq k_{j'}$ for any $j \neq j'$.

Definition

Let $\mathbf{x} \in C_i$ be a point. *H* is a flipping hyperplane for \mathbf{x} if $H = \inf\{0, \mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{d-2}\}$, where $\mathbf{x}_j \in C_{k_j}$ and $i \neq k_j \neq k_{j'}$ for any $j \neq j'$.

Definition

Let $\mathbf{x} \in C_i$ be a point. *H* is a flipping hyperplane for \mathbf{x} if $H = \inf\{0, \mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{d-2}\}$, where $\mathbf{x}_j \in C_{k_j}$ and $i \neq k_j \neq k_{j'}$ for any $j \neq j'$.

Definition

A flip (of a colored point **x**): $\mathbf{x} \rightsquigarrow \mathbf{x}'$

s.t. the line segment $\boldsymbol{x}\boldsymbol{x}'$ crosses at most one flipping hyperplane

Definition

Let $\mathbf{x} \in C_i$ be a point. *H* is a flipping hyperplane for \mathbf{x} if $H = \inf\{0, \mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{d-2}\}$, where $\mathbf{x}_j \in C_{k_j}$ and $i \neq k_j \neq k_{j'}$ for any $j \neq j'$.

Definition

A flip (of a colored point **x**): $\mathbf{x} \rightsquigarrow \mathbf{x}'$

s.t. the line segment $\boldsymbol{x}\boldsymbol{x}'$ crosses at most one flipping hyperplane

Proof of Main Lemma: Types of flips

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A flip is called

 safe, if the line segment xx' does not cross any flipping hyperplane

Definition

A flip is called

- safe, if the line segment xx' does not cross any flipping hyperplane
- 2 mild, if the line segment $\mathbf{x}\mathbf{x}'$ does cross a flipping hyperplane aff $\{\mathbf{0}, \mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{d-2}\}$ and $\mathbf{0} \notin \operatorname{conv}\{\mathbf{x}, \mathbf{x}', \mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{d-2}\}$

Definition

A flip is called

- safe, if the line segment xx' does not cross any flipping hyperplane
- 2 mild, if the line segment $\mathbf{x}\mathbf{x}'$ does cross a flipping hyperplane aff $\{\mathbf{0}, \mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{d-2}\}$ and $\mathbf{0} \notin \operatorname{conv}\{\mathbf{x}, \mathbf{x}', \mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{d-2}\}$

3 wild, otherwise

Proof of Main Lemma: Safe and mild flips

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 a safe flip preserves $B \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **1** a safe flip preserves $B \implies$ it preserves $\widetilde{\beta}_{d-1}(B)$
 - \Rightarrow we may assume that all the points are in general position

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

イロト イポト イヨト イヨト

3

イロト 不得下 イヨト イヨト

э

Wild flips do change B. B' = simpl. complex after the flip σ_0 a d-simplex present in B' and not in B $\sigma_1, \dots, \sigma_r$ all d-simplices that are in B and not in B'

Wild flips do change B. B' = simpl. complex after the flip σ_0 a d-simplex present in B' and not in B $\sigma_1, \dots, \sigma_r$ all d-simplices that are in B and not in B' τ_1, \dots, τ_s all d-simplices present in both B and B'

Since $\tilde{\beta}_{d-1}(B) = 1$, every (d-1)-cycle z in B can be expressed as

$$\mathbf{z} = \sum_{i \in I} \partial \sigma_i + \sum_{j \in J} \partial \tau_j,$$

where $I \subseteq \{0, 1, \ldots, r\}$ and $J \subseteq \{1, \ldots, s\}$.

Wild flips do change B. B' = simpl. complex after the flip σ_0 a d-simplex present in B' and not in B $\sigma_1, \dots, \sigma_r$ all d-simplices that are in B and not in B' τ_1, \dots, τ_s all d-simplices present in both B and B'

Since $\tilde{\beta}_{d-1}(B) = 1$, every (d-1)-cycle z in B can be expressed as

$$\mathbf{z} = \sum_{i \in I} \partial \sigma_i + \sum_{j \in J} \partial \tau_j,$$

where $I \subseteq \{0, 1, \dots, r\}$ and $J \subseteq \{1, \dots, s\}$.

 $\partial \tau_i$ and $\partial \sigma_0$ boundaries in $B' \Rightarrow \partial \sigma_1, \dots, \partial \sigma_r$ generate $\widetilde{H}_{d-1}(B')$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Clearly $\partial \sigma_1$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}(B') \geq 1$.

Clearly $\partial \sigma_1$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}(B') \geq 1$.

Clearly $\partial \sigma_1$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}(B') \geq 1$.

Clearly $\partial \sigma_1$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}(B') \geq 1$.

Clearly $\partial \sigma_1$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}(B') \geq 1$.

Clearly $\partial \sigma_1$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}(B') \geq 1$.

Lemma: For every k > 0, the cycle $\partial \sigma_1 + \partial \sigma_k$ is contained in a subcomplex *C* with $\tilde{\beta}_{d-1}(C) = 0$.

 \Rightarrow all (d-1)-cycles in C are zero homologous

・ロト ・ 雪 ト ・ ヨ ト ・

Clearly $\partial \sigma_1$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}(B') \geq 1$.

Lemma: For every k > 0, the cycle $\partial \sigma_1 + \partial \sigma_k$ is contained in a subcomplex C with $\tilde{\beta}_{d-1}(C) = 0$.

⇒ all (d-1)-cycles in *C* are zero homologous ⇒ $\partial \sigma_1$ and $\partial \sigma_k$ are homologous in *B'* for all *k* and $\tilde{\beta}_{d-1}(B') = 1$ as claimed. Thank you for your attention!