Colorful simplicial depth

Zuzana Patáková

joint work with Karim Adiprasito, Philip Brinkmann, Arnau Padrol, Pavel Paták, and Raman Sanyal

Institute of Science and Technology

ICERM
1st December, Providence

Colorful configurations

- $\mathcal{C}=\left\{C_{0}, \ldots, C_{d}\right\}$
- $\varphi: \bigcup C_{i} \rightarrow \mathbb{R}^{d} \quad \Rightarrow \quad(\mathcal{C}, \varphi)$ is a colorful configuration

Colorful configurations

- $\mathcal{C}=\left\{C_{0}, \ldots, C_{d}\right\}$
- $\varphi: \bigcup C_{i} \rightarrow \mathbb{R}^{d} \quad \Rightarrow \quad(\mathcal{C}, \varphi)$ is a colorful configuration

Colorful configurations

- $\mathcal{C}=\left\{C_{0}, \ldots, C_{d}\right\}$
- $\varphi: \bigcup C_{i} \rightarrow \mathbb{R}^{d} \quad \Rightarrow \quad(\mathcal{C}, \varphi)$ is a colorful configuration
- $T \subseteq \bigcup C_{i}$ is colorful if it contains $|T|$ colors

Colorful configurations

- $\mathcal{C}=\left\{C_{0}, \ldots, C_{d}\right\}$
- $\varphi: \bigcup C_{i} \rightarrow \mathbb{R}^{d} \quad \Rightarrow \quad(\mathcal{C}, \varphi)$ is a colorful configuration
- $T \subseteq \bigcup C_{i}$ is colorful if it contains $|T|$ colors
- a simplex is colorful if it is spanned by $\varphi(T), T$ colorful

Colorful simplex

Colorful configurations

- $\mathcal{C}=\left\{C_{0}, \ldots, C_{d}\right\}$
- $\varphi: \bigcup C_{i} \rightarrow \mathbb{R}^{d} \quad \Rightarrow \quad(\mathcal{C}, \varphi)$ is a colorful configuration
- $T \subseteq \bigcup C_{i}$ is colorful if it contains $|T|$ colors
- a simplex is colorful if it is spanned by $\varphi(T), T$ colorful

Colorful simplex

Colorful configurations

- $\mathcal{C}=\left\{C_{0}, \ldots, C_{d}\right\}$
- $\varphi: \bigcup C_{i} \rightarrow \mathbb{R}^{d} \quad \Rightarrow \quad(\mathcal{C}, \varphi)$ is a colorful configuration
- $T \subseteq \bigcup C_{i}$ is colorful if it contains $|T|$ colors
- a simplex is colorful if it is spanned by $\varphi(T), T$ colorful

Colorful simplex

Colorful configurations

- $\mathcal{C}=\left\{C_{0}, \ldots, C_{d}\right\}$
- $\varphi: \bigcup C_{i} \rightarrow \mathbb{R}^{d} \quad \Rightarrow \quad(\mathcal{C}, \varphi)$ is a colorful configuration
- $T \subseteq \bigcup C_{i}$ is colorful if it contains $|T|$ colors
- a simplex is colorful if it is spanned by $\varphi(T), T$ colorful

Colorful simplex

Colorful configurations

- $\mathcal{C}=\left\{C_{0}, \ldots, C_{d}\right\}$
- $\varphi: \bigcup C_{i} \rightarrow \mathbb{R}^{d} \quad \Rightarrow \quad(\mathcal{C}, \varphi)$ is a colorful configuration
- $T \subseteq \bigcup C_{i}$ is colorful if it contains $|T|$ colors
- a simplex is colorful if it is spanned by $\varphi(T), T$ colorful

Not Colorful simplex

Colorful configurations

- $\mathcal{C}=\left\{C_{0}, \ldots, C_{d}\right\}$
- $\varphi: \bigcup C_{i} \rightarrow \mathbb{R}^{d} \quad \Rightarrow \quad(\mathcal{C}, \varphi)$ is a colorful configuration
- $T \subseteq \bigcup C_{i}$ is colorful if it contains $|T|$ colors
- a simplex is colorful if it is spanned by $\varphi(T), T$ colorful

Not Colorful simplex

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex

Allowed

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex

Allowed

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex

Not Allowed

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- \mathcal{C} is centered $\ldots 0 \in \operatorname{conv} \varphi\left(C_{i}\right)$

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- \mathcal{C} is centered $\ldots 0 \in \operatorname{conv} \varphi\left(C_{i}\right)$

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- \mathcal{C} is centered $\ldots 0 \in \operatorname{conv} \varphi\left(C_{i}\right)$

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- \mathcal{C} is centered $\ldots 0 \in \operatorname{conv} \varphi\left(C_{i}\right)$

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- \mathcal{C} is centered $\ldots 0 \in \operatorname{conv} \varphi\left(C_{i}\right)$

Centered

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- \mathcal{C} is centered $\ldots 0 \in \operatorname{conv} \varphi\left(C_{i}\right)$

Centered

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- \mathcal{C} is centered $\ldots 0 \in \operatorname{conv} \varphi\left(C_{i}\right)$

Not Centered

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- \mathcal{C} is centered $\ldots 0 \in \operatorname{conv} \varphi\left(C_{i}\right)$
- colorful d-dim simplex S is hitting if $0 \in \operatorname{conv} S$

A colorful configuration

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- \mathcal{C} is centered $\ldots 0 \in \operatorname{conv} \varphi\left(C_{i}\right)$
- colorful d-dim simplex S is hitting if $0 \in \operatorname{conv} S$

Hitting simplex

Centered colorful configurations

- $p \in \mathbb{R}^{d}$ arbitrary point \ldots wlog $\mathbf{p}=\mathbf{0}$
- assume: 0 does not lie on a boundary of any colorful simplex
- \mathcal{C} is centered $\ldots 0 \in \operatorname{conv} \varphi\left(C_{i}\right)$
- colorful d-dim simplex S is hitting if $0 \in \operatorname{conv} S$

Another hitting simplex

Colorful simplicial depth

- \mathcal{C} is a colorful centered configuration
- colorful simplicial depth of $\mathcal{C}=\operatorname{cdepth}(\mathcal{C})$ $=$ number of hitting simplices of \mathcal{C}

Deza, Huang, Stephen and Terlaky '06

- Placing all C_{i} the same \rightsquigarrow simplicial depth
- points with maximal simplicial depth \approx higher dim analogue of median
- applications in statistics

Colorful simplicial depth

- \mathcal{C} is a colorful centered configuration
- colorful simplicial depth of $\mathcal{C}=\operatorname{cdepth}(\mathcal{C})$ $=$ number of hitting simplices of \mathcal{C}

> Deza, Huang, Stephen and Terlaky '06

- Placing all C_{i} the same \rightsquigarrow simplicial depth
- points with maximal simplicial depth
\approx higher dim analogue of median

Colorful simplicial depth

- \mathcal{C} is a colorful centered configuration
- colorful simplicial depth of $\mathcal{C}=\operatorname{cdepth}(\mathcal{C})$ $=$ number of hitting simplices of \mathcal{C}

> Deza, Huang, Stephen and Terlaky '06

- Placing all C_{i} the same \rightsquigarrow simplicial depth
- points with maximal simplicial depth
\approx higher dim analogue of median
- applications in statistics

Known results

Theorem (Colorful Carathéodory, Bárány '82)
There is always at least one hitting simplex. (cdepth ≥ 1)

Known results

Theorem (Colorful Carathéodory, Bárány '82)
There is always at least one hitting simplex. (cdepth ≥ 1)
Conjecture (Deza, Huang, Stephen, Terlaky, '06)
If Card $C_{0}=\operatorname{Card} C_{1}=\ldots=\operatorname{Card} C_{d}=d+1$, then
(1) cdepth $\mathcal{C} \geq \mathbf{d}^{2}+\mathbf{1}$

Deza et al: both bounds can be attained

Known results

Theorem (Colorful Carathéodory, Bárány '82)
There is always at least one hitting simplex. (cdepth ≥ 1)
Conjecture (Deza, Huang, Stephen, Terlaky, '06)
If Card $C_{0}=\operatorname{Card} C_{1}=\ldots=\operatorname{Card} C_{d}=d+1$, then
(1) cdepth $\mathcal{C} \geq \mathbf{d}^{2}+\mathbf{1}$
(2) cdepth $\mathcal{C} \leq \mathbf{1}+\mathbf{d}^{\mathbf{d}+1}$

Known results

Theorem (Colorful Carathéodory, Bárány '82)
There is always at least one hitting simplex. (cdepth ≥ 1)
Conjecture (Deza, Huang, Stephen, Terlaky, '06)
If Card $C_{0}=\operatorname{Card} C_{1}=\ldots=\operatorname{Card} C_{d}=d+1$, then
(1) cdepth $\mathcal{C} \geq \mathbf{d}^{2}+\mathbf{1}$
(2) cdepth $\mathcal{C} \leq \mathbf{1}+\mathbf{d}^{\mathbf{d}+1}$

Deza et al: both bounds can be attained

Known results

Theorem (Colorful Carathéodory, Bárány '82)
There is always at least one hitting simplex. (cdepth ≥ 1)
Conjecture (Deza, Huang, Stephen, Terlaky, '06)
If Card $C_{0}=\operatorname{Card} C_{1}=\ldots=$ Card $C_{d}=d+1$, then
(1) $\operatorname{cdepth} \mathcal{C} \geq \mathbf{d}^{2}+\mathbf{1}$
(2) cdepth $\mathcal{C} \leq \mathbf{1}+\mathbf{d}^{\mathbf{d}+1}$

Deza et al: both bounds can be attained
Lower bound: Deza et al ['06], Bárány, Matoušek ['07], ... Sarrabezolles ['15]

Upper bound

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$
\operatorname{cdepth} \mathcal{C} \leq 1+\prod_{i=0}^{d}\left(\operatorname{Card} C_{i}-1\right)
$$

Upper bound

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$
\operatorname{cdepth} \mathcal{C} \leq 1+\prod_{i=0}^{d}\left(\operatorname{Card} C_{i}-1\right)
$$

- for Card $C_{i}=d+1$, we have Deza's upper bound $1+d^{d+1}$

Upper bound

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$
\operatorname{cdepth} \mathcal{C} \leq 1+\prod_{i=0}^{d}\left(\operatorname{Card} C_{i}-1\right)
$$

- for $\operatorname{Card} C_{i}=d+1$, we have Deza's upper bound $1+d^{d+1}$
- the bound is tight!

Upper bound

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$
\operatorname{cdepth} \mathcal{C} \leq 1+\prod_{i=0}^{d}\left(\operatorname{Card} C_{i}-1\right)
$$

- for Card $C_{i}=d+1$, we have Deza's upper bound $1+d^{d+1}$
- the bound is tight!

Upper bound

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$
\operatorname{cdepth} \mathcal{C} \leq 1+\prod_{i=0}^{d}\left(\operatorname{Card} C_{i}-1\right)
$$

- for Card $C_{i}=d+1$, we have Deza's upper bound $1+d^{d+1}$
- the bound is tight!

Upper bound

Theorem (Adiprasito, Brinkmann, Padrol, Paták, P, Sanyal)

$$
\operatorname{cdepth} \mathcal{C} \leq 1+\prod_{i=0}^{d}\left(\operatorname{Card} C_{i}-1\right)
$$

- for Card $C_{i}=d+1$, we have Deza's upper bound $1+d^{d+1}$
- the bound is tight!

Topological reformulation

Topological approach

- $A=$ abstract simpl. complex of all colorful sets in $\bigcup C_{i}$

Topological approach

- $A=$ abstract simpl. complex of all colorful sets in $\bigcup C_{i}$
- $B=$ all sets $S \subset \bigcup C_{i}$ s.t. $\varphi(S)$ is non-hitting

Topological approach

- $A=$ abstract simpl. complex of all colorful sets in $\bigcup C_{i}$
- $B=$ all sets $S \subset \bigcup C_{i}$ s.t. $\varphi(S)$ is non-hitting
- $f_{i}(K)=$ number of i-dim simplices in K

Topological approach

- $A=$ abstract simpl. complex of all colorful sets in $\bigcup C_{i}$
- $B=$ all sets $S \subset \bigcup C_{i}$ s.t. $\varphi(S)$ is non-hitting
- $f_{i}(K)=$ number of i-dim simplices in K
- $\operatorname{cdepth}(\mathcal{C})=f_{d}(A)-f_{d}(B)$

Topological approach

- $A=$ abstract simpl. complex of all colorful sets in $\bigcup C_{i}$
- $B=$ all sets $S \subset \bigcup C_{i}$ s.t. $\varphi(S)$ is non-hitting
- $f_{i}(K)=$ number of i-dim simplices in K
- $\operatorname{cdepth}(\mathcal{C})=f_{d}(A)-f_{d}(B)$
- $A^{(d-1)}=B^{(d-1)}$

Topological approach

- $A=$ abstract simpl. complex of all colorful sets in $\bigcup C_{i}$
- $B=$ all sets $S \subset \bigcup C_{i}$ s.t. $\varphi(S)$ is non-hitting
- $f_{i}(K)=$ number of i-dim simplices in K
- $\operatorname{cdepth}(\mathcal{C})=f_{d}(A)-f_{d}(B)$
- $A^{(d-1)}=B^{(d-1)} \quad \Rightarrow$ for $i<d \quad f_{i}(A)=f_{i}(B)$

Topological approach

- $A=$ abstract simpl. complex of all colorful sets in $\bigcup C_{i}$
- $B=$ all sets $S \subset \bigcup C_{i}$ s.t. $\varphi(S)$ is non-hitting
- $f_{i}(K)=$ number of i-dim simplices in K
- $\operatorname{cdepth}(\mathcal{C})=f_{d}(A)-f_{d}(B)$
- $A^{(d-1)}=B^{(d-1)} \quad \Rightarrow$ for $i<d \quad f_{i}(A)=f_{i}(B)$
\Rightarrow for $i<d-1 \quad \widetilde{\beta}_{i}(A)=\widetilde{\beta}_{i}(B)$

Topological approach

$\operatorname{cdepth} \mathcal{C}=f_{d}(A)-f_{d}(B)$

Topological approach

$\operatorname{cdepth} \mathcal{C}=f_{d}(A)-f_{d}(B)$

Topological approach

$\operatorname{cdepth} \mathcal{C}=f_{d}(A)-f_{d}(B)$

$$
\widetilde{\chi}(A)=-1+\sum_{i=0}^{d}(-1)^{i} f_{i}(A)=\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)
$$

Topological approach

cdepth $\mathcal{C}=f_{d}(A)-f_{d}(B)$

$$
\begin{aligned}
\widetilde{\chi}(A) & =-1+\sum_{i=0}^{d}(-1)^{i} f_{i}(A)=\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A) \\
& \Rightarrow f_{d}(A)=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)+1-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(A)\right)
\end{aligned}
$$

Topological approach

cdepth $\mathcal{C}=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)+1-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(A)\right)-f_{d}(B)$

$$
\Rightarrow f_{d}(A)=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)+1-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(A)\right)
$$

Topological approach

$$
\text { cdepth } \mathcal{C}=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)+1-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(A)\right)-f_{d}(B)
$$

Topological approach

$\operatorname{cdepth} \mathcal{C}=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)+1-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(A)\right)-f_{d}(B)$

$$
f_{d}(B)=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{\tilde{\beta}_{i}}(B)+1-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(B)\right)
$$

Topological approach

$\operatorname{cdepth} \mathcal{C}=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)+1-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(A)\right.$

$$
\left.-\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(B)-1+\sum_{i=0}^{d-1}(-1)^{i} f_{i}(B)\right)
$$

$$
f_{d}(B)=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(B)+1-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(B)\right)
$$

Topological approach

$$
\begin{aligned}
& \operatorname{cdepth} \mathcal{C}=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)+1-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(A)\right. \\
&\left.\quad-\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(B)-1+\sum_{i=0}^{d-1}(-1)^{i} f_{i}(B)\right)
\end{aligned}
$$

Topological approach

$$
\begin{aligned}
\operatorname{cdepth} \mathcal{C}=(-1)^{d} & \left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(A)\right. \\
& \left.-\sum_{i=0}^{d}(-1)^{\widetilde{\beta}_{i}}(B)+\sum_{i=0}^{d-1}(-1)^{i} f_{i}(B)\right)
\end{aligned}
$$

Topological approach

$$
\begin{aligned}
\operatorname{cdepth} \mathcal{C}=(-1)^{d} & \left(\sum_{i=0}^{d}(-1)^{\prime} \widetilde{\beta}_{i}(A)-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(A)\right. \\
& \left.-\sum_{i=0}^{d}(-1)^{)^{\prime}}(B)+\sum_{i=0}^{d-1}(-1)^{i} f_{i}(B)\right)
\end{aligned}
$$

Topological approach

cdepth $\mathcal{C}=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)-\sum_{i=0}^{d-1}(-1)^{i} f_{i}(A)\right.$

$$
\left.-\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(B)+\sum_{i=0}^{d-1}(-1)^{i} f_{i}(B)\right)
$$

For $i<d: f_{i}(A)=f_{i}(B)$

Topological approach

$$
\begin{aligned}
& \text { cdepth } \mathcal{C}=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{\widetilde{\beta}_{i}}(A)\right. \\
&-\sum_{i=0}^{d}(-1)^{\left.\widetilde{\beta}_{i}(B)\right)}
\end{aligned}
$$

Topological approach

$$
\begin{aligned}
\operatorname{cdepth} \mathcal{C}=(-1)^{d}\left(\sum_{i=0}^{d}\right. & (-1)^{i} \widetilde{\beta}_{i}(A) \\
& \left.-\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(B)\right)
\end{aligned}
$$

Topological approach

cdepth $\mathcal{C}=(-1)^{d}\left(\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(A)\right.$

$$
\left.-\sum_{i=0}^{d}(-1)^{i} \widetilde{\beta}_{i}(B)\right)
$$

For $i<d-1: \widetilde{\beta}_{i}(A)=\widetilde{\beta}_{i}(B)$

Topological approach

$$
\begin{aligned}
\operatorname{cdepth} \mathcal{C}=(-1)^{d}(& (-1)^{d} \widetilde{\beta}_{d}(A)+(-1)^{d-1} \widetilde{\beta}_{d-1}(A) \\
& \left.-(-1)^{d} \widetilde{\beta}_{d}(B)-(-1)^{d-1} \widetilde{\beta}_{d-1}(B)\right)
\end{aligned}
$$

Topological approach

$$
\begin{aligned}
\operatorname{cdepth} \mathcal{C}=(-1)^{d}(& (-1)^{d} \widetilde{\beta}_{d}(A)+(-1)^{d-1} \widetilde{\beta}_{d-1}(A) \\
& \left.-(-1)^{d} \widetilde{\beta}_{d}(B)-(-1)^{d-1} \widetilde{\beta}_{d-1}(B)\right)
\end{aligned}
$$

Topological approach

$$
\operatorname{cdepth} \mathcal{C}=\widetilde{\beta}_{d}(A)-\widetilde{\beta}_{d-1}(A)-\widetilde{\beta}_{d}(B)+\widetilde{\beta}_{d-1}(B)
$$

Topological approach

$$
\text { cdepth } \mathcal{C}=\widetilde{\beta}_{d}(A)-\widetilde{\beta}_{d-1}(A)-\widetilde{\beta}_{d}(B)+\widetilde{\beta}_{d-1}(B)
$$

Topological approach

$$
\operatorname{cdepth} \mathcal{C}=\widetilde{\beta}_{d}(A)-0-\widetilde{\beta}_{d}(B)+\widetilde{\beta}_{d-1}(B)
$$

Topological approach

$$
\operatorname{cdepth} \mathcal{C}=\widetilde{\beta}_{d}(A)-\widetilde{\beta}_{d}(B)+\widetilde{\beta}_{d-1}(B)
$$

Topological approach

$$
\operatorname{cdepth} \mathcal{C}=\widetilde{\beta}_{d}(A)-\widetilde{\beta}_{d}(B)+\widetilde{\beta}_{d-1}(B)
$$

Topological approach

$$
\operatorname{cdepth} \mathcal{C}=\prod_{i=0}^{d}\left(\left|C_{i}\right|-1\right)-\widetilde{\beta}_{d}(B)+\widetilde{\beta}_{d-1}(B)
$$

Topological approach

$$
\operatorname{cdepth} \mathcal{C}=\prod_{i=0}^{d}\left(\left|C_{i}\right|-1\right)-\widetilde{\beta}_{d}(B)+\widetilde{\beta}_{d-1}(B)
$$

Topological approach

cdepth $\mathcal{C}=\prod_{i=0}^{d}\left(\left|C_{i}\right|-1\right)-\widetilde{\beta}_{d}(B)+\widetilde{\beta}_{d-1}(B)$

Our main Lemma: $\widetilde{\beta}_{d-1}(B)=1$

Topological approach

$$
\operatorname{cdepth} \mathcal{C}=\prod_{i=0}^{d}\left(\left|C_{i}\right|-1\right)-\widetilde{\beta}_{d}(B)+1
$$

Topological approach

$$
\begin{aligned}
\operatorname{cdepth} \mathcal{C} & =\prod_{i=0}^{d}\left(\left|C_{i}\right|-1\right)-\widetilde{\beta}_{d}(B)+1 \\
\Rightarrow \quad \operatorname{cdepth} \mathcal{C} & \leq \prod_{i=0}^{d}\left(\left|C_{i}\right|-1\right)+1
\end{aligned}
$$

Main lemma

Lemma
$\widetilde{\beta}_{d-1}\left(B ; \mathbb{Z}_{2}\right)=1$.
(1) First show for a special configuration of points:

Main lemma

Lemma
$\widetilde{\beta}_{d-1}\left(B ; \mathbb{Z}_{2}\right)=1$.
Proof idea:
(1) First show for a special configuration of points:
(2) Use flips preserving $\widetilde{\beta}_{d-1}\left(B ; \mathbb{Z}_{2}\right)$

Main lemma

Lemma
$\widetilde{\beta}_{d-1}\left(B ; \mathbb{Z}_{2}\right)=1$.
Proof idea:
(1) First show for a special configuration of points:

Main lemma

Lemma
$\widetilde{\beta}_{d-1}\left(B ; \mathbb{Z}_{2}\right)=1$.
Proof idea:
(1) First show for a special configuration of points:

(2) Use flips preserving $\widetilde{\beta}_{d-1}\left(B ; \mathbb{Z}_{2}\right)$

Further connections

Further connections - normal surface theory

- normal d-fan $=$ collection of polyhedral cones

Further connections - normal surface theory

- normal d-fan $=$ collection of polyhedral cones

1-fan, given by normals of a triangle

Further connections - normal surface theory

- normal d-fan $=$ collection of polyhedral cones

1-fan, given by normals of a triangle

Further connections - normal surface theory

- normal d-fan $=$ collection of polyhedral cones

2-fan; halfplanes $=$ leafs

Further connections - normal surface theory

- normal d-fan $=$ collection of polyhedral cones

2-fan; halfplanes $=$ leafs

- two (and more) normal d-fans \Rightarrow common refinement

Further connections - normal surface theory

- Setting: $F_{1}, \ldots F_{d-1}$ normal $(d-1)$-fans in general position with leafs $L_{1}^{F_{i}}, L_{2}^{F_{i}}, L_{3}^{F_{i}}$
common refinement $=$ collection of rays $L_{i_{1}}^{F_{1}} \cap \ldots \cap L_{i_{d-1}}^{F_{d-1}}$

Further connections - normal surface theory

- Setting: $F_{1}, \ldots F_{d-1}$ normal $(d-1)$-fans in general position with leafs $L_{1}^{F_{i}}, L_{2}^{F_{i}}, L_{3}^{F_{i}}$
common refinement $=$ collection of rays $L_{i_{1}}^{F_{1}} \cap \ldots \cap L_{i_{d-1}}^{F_{d-1}}$

- Question: Max number of rays in the common refinement?
- Conjecture

Further connections - normal surface theory

- Setting: $F_{1}, \ldots F_{d-1}$ normal $(d-1)$-fans in general position with leafs $L_{1}^{F_{i}}, L_{2}^{F_{i}}, L_{3}^{F_{i}}$
common refinement $=$ collection of rays $L_{i_{1}}^{F_{1}} \cap \ldots \cap L_{i_{d-1}}^{F_{d-1}}$

- Question: Max number of rays in the common refinement?
- Conjecture (Burton'03): $1+2^{\mathrm{d}-1}$

Further connections - normal surface theory

- $P_{1}, \ldots, P_{k} \subset \mathbb{R}^{d}$ be polytopes (not necessarily full dim)

Further connections - normal surface theory

- $P_{1}, \ldots, P_{k} \subset \mathbb{R}^{d}$ be polytopes (not necessarily full dim)
- Minkowski sum

$$
P_{1}+P_{2}+\ldots+P_{k}=\left\{p_{1}+p_{2}+\ldots+p_{k} \mid p_{i} \in P_{i}\right\} \subseteq \mathbb{R}^{d}
$$

Further connections - normal surface theory

- $P_{1}, \ldots, P_{k} \subset \mathbb{R}^{d}$ be polytopes (not necessarily full dim)
- Minkowski sum

$$
P_{1}+P_{2}+\ldots+P_{k}=\left\{p_{1}+p_{2}+\ldots+p_{k} \mid p_{i} \in P_{i}\right\} \subseteq \mathbb{R}^{d}
$$

Further connections - normal surface theory

- $P_{1}, \ldots, P_{k} \subset \mathbb{R}^{d}$ be polytopes (not necessarily full dim)
- Minkowski sum

$$
P_{1}+P_{2}+\ldots+P_{k}=\left\{p_{1}+p_{2}+\ldots+p_{k} \mid p_{i} \in P_{i}\right\} \subseteq \mathbb{R}^{d}
$$

Further connections - normal surface theory

- Setting: $F_{1}, \ldots F_{d-1}$ normal $(d-1)$-fans in general position with leafs $L_{1}^{F_{i}}, L_{2}^{F_{i}}, L_{3}^{F_{i}}$
common refinement $=$ collection of rays $L_{i_{1}}^{F_{1}} \cap \ldots \cap L_{i_{d-1}}^{F_{d-1}}$

Further connections - normal surface theory

- Setting: $F_{1}, \ldots F_{d-1}$ normal $(d-1)$-fans in general position with leafs $L_{1}^{F_{i}}, L_{2}^{F_{i}}, L_{3}^{F_{i}}$
common refinement $=$ collection of rays $L_{i_{1}}^{F_{1}} \cap \ldots \cap L_{i_{d-1}}^{F_{d-1}}$

- Reformulation: number of rays $=$ number of facets of Minkowski sum which correspond to a Minkow. sum of facets

Further connections - normal surface theory

- facets we are interested in
$=$ hitting simplices of the associated colorful Gale transform

- \Rightarrow Deza's bound $1+\prod_{i=1}^{d-1}\left(\left|C_{i}\right|-1\right)$ becomes $1+2^{d-1}$
\Rightarrow Burton's conjecture is true!!

Proof idea

Proof of Main Lemma: Initial configuration

Lemma : $\widetilde{\beta}_{d-1}\left(B, \mathbb{Z}_{2}\right)=1$

Proof of Main Lemma: Initial configuration

Lemma : $\widetilde{\beta}_{d-1}\left(B, \mathbb{Z}_{2}\right)=1$

- Let $S \ni 0$ be a simplex with vertices $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{d}$.
- $\varphi\left(C_{i}\right)=\left\{\mathbf{v}_{i},-\mathbf{v}_{i},-2 \mathbf{v}_{i},-3 \mathbf{v}_{i} \ldots,-\left(\left|C_{i}\right|-1\right) \mathbf{v}_{i}\right\}$.

Proof of Main Lemma: Initial configuration

Lemma : $\widetilde{\beta}_{d-1}\left(B, \mathbb{Z}_{2}\right)=1$

- Let $S \ni 0$ be a simplex with vertices $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{d}$.
- $\varphi\left(C_{i}\right)=\left\{\mathbf{v}_{i},-\mathbf{v}_{i},-2 \mathbf{v}_{i},-3 \mathbf{v}_{i} \ldots,-\left(\left|C_{i}\right|-1\right) \mathbf{v}_{i}\right\}$.

Proof of Main Lemma: Initial configuration

Lemma: $\widetilde{\beta}_{d-1}\left(B, \mathbb{Z}_{2}\right)=1$

- Let $S \ni 0$ be a simplex with vertices $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{d}$.
- $\varphi\left(C_{i}\right)=\left\{\mathbf{v}_{i},-\mathbf{v}_{i},-2 \mathbf{v}_{i},-3 \mathbf{v}_{i} \ldots,-\left(\left|C_{i}\right|-1\right) \mathbf{v}_{i}\right\}$.

- B deformation retracts onto the $(d-1)$-dimensional sphere, hence $\widetilde{\beta}_{d-1}(B)=1$.

Proof of Main Lemma: Flips

Definition

Let $\mathbf{x} \in C_{i}$ be a point.

Proof of Main Lemma: Flips

Definition

Let $\mathbf{x} \in C_{i}$ be a point. H is a flipping hyperplane for \mathbf{x} if $H=\operatorname{aff}\left\{0, \mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d-2}\right\}$, where $\mathbf{x}_{j} \in C_{k_{j}}$ and $i \neq k_{j} \neq k_{j^{\prime}}$ for any $j \neq j^{\prime}$.

Proof of Main Lemma: Flips

Definition

Let $\mathbf{x} \in C_{i}$ be a point. H is a flipping hyperplane for \mathbf{x} if $H=\operatorname{aff}\left\{0, \mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d-2}\right\}$, where $\mathbf{x}_{j} \in C_{k_{j}}$ and $i \neq k_{j} \neq k_{j^{\prime}}$ for any $j \neq j^{\prime}$.

Proof of Main Lemma: Flips

Definition

Let $\mathbf{x} \in C_{i}$ be a point. H is a flipping hyperplane for \mathbf{x} if $H=\operatorname{aff}\left\{0, \mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d-2}\right\}$, where $\mathbf{x}_{j} \in C_{k_{j}}$ and $i \neq k_{j} \neq k_{j^{\prime}}$ for any $j \neq j^{\prime}$.

Definition

A flip (of a colored point \mathbf{x}): $\mathbf{x} \rightsquigarrow \mathbf{x}^{\prime}$
s.t. the line segment $\mathbf{x x}^{\prime}$ crosses at most one flipping hyperplane

Proof of Main Lemma: Flips

Definition

Let $\mathbf{x} \in C_{i}$ be a point. H is a flipping hyperplane for \mathbf{x} if $H=\operatorname{aff}\left\{0, \mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d-2}\right\}$, where $\mathbf{x}_{j} \in C_{k_{j}}$ and $i \neq k_{j} \neq k_{j^{\prime}}$ for any $j \neq j^{\prime}$.

Definition

A flip (of a colored point \mathbf{x}): $\mathbf{x} \rightsquigarrow \mathbf{x}^{\prime}$
s.t. the line segment $\mathbf{x x}^{\prime}$ crosses at most one flipping hyperplane

Proof of Main Lemma: Types of flips

Definition

A flip is called
(1) safe, if the line segment $\mathbf{x x}^{\prime}$ does not cross any flipping hyperplane

$$
\begin{array}{c|c}
\mathrm{x}^{\prime} & x_{0} \\
\% & \\
\vdots & 0 \\
\mathbf{x} & 0
\end{array}
$$

Proof of Main Lemma: Types of flips

Definition

A flip is called
(1) safe, if the line segment $\mathbf{x x}^{\prime}$ does not cross any flipping hyperplane
(2) mild, if the line segment x^{\prime} does cross a flipping hyperplane $\operatorname{aff}\left\{\mathbf{0}, \mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d-2}\right\}$ and $\mathbf{0} \notin \operatorname{conv}\left\{\mathbf{x}, \mathbf{x}^{\prime}, \mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d-2}\right\}$

$$
\begin{array}{cc}
\mathbf{x}^{\prime} & x_{0} \\
& x_{0} \\
& \\
0 & \vdots \\
\mathbf{o} & \mathbf{x}^{\prime} \\
\mathbf{x} & \\
0 & \mathbf{x}
\end{array}
$$

Proof of Main Lemma: Types of flips

Definition

A flip is called
(1) safe, if the line segment $\mathbf{x x}^{\prime}$ does not cross any flipping hyperplane
(2) mild, if the line segment $\mathbf{x x}^{\prime}$ does cross a flipping hyperplane $\operatorname{aff}\left\{\mathbf{0}, \mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d-2}\right\}$ and $\mathbf{0} \notin \operatorname{conv}\left\{\mathbf{x}, \mathbf{x}^{\prime}, \mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d-2}\right\}$
(3) wild, otherwise

Proof of Main Lemma: Safe and mild flips

(1) a safe flip preserves $B \quad \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$

Proof of Main Lemma: Safe and mild flips

(1) a safe flip preserves $B \quad \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$
\Rightarrow we may assume that all the points are in general position

Proof of Main Lemma: Safe and mild flips

(1) a safe flip preserves $B \quad \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$
\Rightarrow we may assume that all the points are in general position
(2) a mild flip preserves $B \quad \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$

Proof of Main Lemma: Safe and mild flips

(1) a safe flip preserves $B \quad \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$
\Rightarrow we may assume that all the points are in general position
(2) a mild flip preserves $B \quad \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$

Proof of Main Lemma: Safe and mild flips

(1) a safe flip preserves $B \quad \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$
\Rightarrow we may assume that all the points are in general position
(2) a mild flip preserves $B \quad \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$

Proof of Main Lemma: Safe and mild flips

(1) a safe flip preserves $B \quad \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$
\Rightarrow we may assume that all the points are in general position
(2) a mild flip preserves $B \quad \Rightarrow$ it preserves $\widetilde{\beta}_{d-1}(B)$

Proof of Main Lemma: Wild flips

Wild flips do change B.

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip σ_{0} a d-simplex present in B^{\prime} and not in B

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip σ_{0} a d-simplex present in B^{\prime} and not in B

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip σ_{0} a d-simplex present in B^{\prime} and not in B

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip σ_{0} a d-simplex present in B^{\prime} and not in B

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip σ_{0} a d-simplex present in B^{\prime} and not in B

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip σ_{0} a d-simplex present in B^{\prime} and not in B

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip
σ_{0}
$\sigma_{1}, \ldots, \sigma_{r}$ a d-simplex present in B^{\prime} and not in B all d-simplices that are in B and not in B^{\prime}

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip
σ_{0}
$\sigma_{1}, \ldots, \sigma_{r}$
$\tau_{1}, \ldots, \tau_{s}$ a d-simplex present in B^{\prime} and not in B all d-simplices that are in B and not in B^{\prime} all d-simplices present in both B and B^{\prime}

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip
σ_{0}
$\sigma_{1}, \ldots, \sigma_{r}$
$\tau_{1}, \ldots, \tau_{s}$ a d-simplex present in B^{\prime} and not in B all d-simplices that are in B and not in B^{\prime} all d-simplices present in both B and B^{\prime}

Since $\widetilde{\beta}_{d-1}(B)=1$, every $(d-1)$-cycle z in B can be expressed as

$$
z=\sum_{i \in I} \partial \sigma_{i}+\sum_{j \in J} \partial \tau_{j},
$$

where $I \subseteq\{0,1, \ldots, r\}$ and $J \subseteq\{1, \ldots, s\}$.

Proof of Main Lemma: Wild flips

Wild flips do change $B . \quad B^{\prime}=$ simpl. complex after the flip
σ_{0}
$\sigma_{1}, \ldots, \sigma_{r}$
$\tau_{1}, \ldots, \tau_{s}$ a d-simplex present in B^{\prime} and not in B all d-simplices that are in B and not in B^{\prime} all d-simplices present in both B and B^{\prime}

Since $\widetilde{\beta}_{d-1}(B)=1$, every $(d-1)$-cycle z in B can be expressed as

$$
z=\sum_{i \in I} \partial \sigma_{i}+\sum_{j \in J} \partial \tau_{j},
$$

where $I \subseteq\{0,1, \ldots, r\}$ and $J \subseteq\{1, \ldots, s\}$.
$\partial \tau_{i}$ and $\partial \sigma_{0}$ boundaries in $B^{\prime} \Rightarrow \partial \sigma_{1}, \ldots, \partial \sigma_{r}$ generate $\widetilde{H}_{d-1}\left(B^{\prime}\right)$.

Proof of Main Lemma

Clearly $\partial \sigma_{1}$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}\left(B^{\prime}\right) \geq 1$.
Lemma: For every $k>0$, the cycle $\partial \sigma_{1}+\partial \sigma_{k}$ is contained in a subcomplex C with $\widetilde{\beta}_{d-1}(C)=0$.

Proof of Main Lemma

Clearly $\partial \sigma_{1}$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}\left(B^{\prime}\right) \geq 1$.
Lemma: For every $k>0$, the cycle $\partial \sigma_{1}+\partial \sigma_{k}$ is contained in a subcomplex C with $\widetilde{\beta}_{d-1}(C)=0$.

Proof of Main Lemma

Clearly $\partial \sigma_{1}$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}\left(B^{\prime}\right) \geq 1$.
Lemma: For every $k>0$, the cycle $\partial \sigma_{1}+\partial \sigma_{k}$ is contained in a subcomplex C with $\widetilde{\beta}_{d-1}(C)=0$.

Proof of Main Lemma

Clearly $\partial \sigma_{1}$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}\left(B^{\prime}\right) \geq 1$.
Lemma: For every $k>0$, the cycle $\partial \sigma_{1}+\partial \sigma_{k}$ is contained in a subcomplex C with $\widetilde{\beta}_{d-1}(C)=0$.

Proof of Main Lemma

Clearly $\partial \sigma_{1}$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}\left(B^{\prime}\right) \geq 1$.
Lemma: For every $k>0$, the cycle $\partial \sigma_{1}+\partial \sigma_{k}$ is contained in a subcomplex C with $\widetilde{\beta}_{d-1}(C)=0$.

Proof of Main Lemma

Clearly $\partial \sigma_{1}$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}\left(B^{\prime}\right) \geq 1$.
Lemma: For every $k>0$, the cycle $\partial \sigma_{1}+\partial \sigma_{k}$ is contained in a subcomplex C with $\widetilde{\beta}_{d-1}(C)=0$.

\Rightarrow all $(d-1)$-cycles in C are zero homologous

Proof of Main Lemma

Clearly $\partial \sigma_{1}$ is not zero homologous, therefore $\widetilde{\beta}_{d-1}\left(B^{\prime}\right) \geq 1$.
Lemma: For every $k>0$, the cycle $\partial \sigma_{1}+\partial \sigma_{k}$ is contained in a subcomplex C with $\widetilde{\beta}_{d-1}(C)=0$.

\Rightarrow all $(d-1)$-cycles in C are zero homologous
$\Rightarrow \partial \sigma_{1}$ and $\partial \sigma_{k}$ are homologous in B^{\prime} for all k and $\widetilde{\beta}_{d-1}\left(B^{\prime}\right)=1$ as claimed.

Thank you for your attention!

